

Quantum Computing and Programming Workshop Rigetti Computing

02.25.2018

rigetti

Full-stack quantum computing company.

8-qubit and **19-qubit** QPUs released on our cloud platform in 2017; **16-qubit Aspen-series** QPUs released fall 2018

Quantum Cloud Services launched Fall 2018, with roadmap to **128-qubit systems**

100+ employees w/ \$119M raised

Home of Fab-1, the world's first commercial quantum integrated circuit fab

Located in Berkeley, Calif. (R&D Lab) and Fremont, Calif.

Quantum Cloud Services and the Rigetti Forest SDK

67

Rigetti Quantum Cloud Services

QCS

API Model

Rigetti Computing Proprietary and Confidential

Rigetti QCS Addresses 3 Key Performance Bottlenecks

Colocation to reduce network latency between QPU and CPU.

Parameterized program compilation to reduce # of round trips to achieve solution.

Active reset of qubits in QPU to accelerate quantum runtime

new Quantum Machine Image access model

~30x faster than web API access models

Rigetti QCS Addresses 3 Key Performance Bottlenecks

Web API	Colocation to reduce network latency between QPU and CPU.	Parametric Compilation to reduce # of round trips to achieve solution.	Active Reset to accelerate quantum runtime	
~100 seconds	x 4.3	x 13.5	x 34.6 faster	

E.g. IBM Quantum Experience Rigetti Forest 1.x

Rigetti Computing Proprietary and Confidential

<u>pyQuil</u>

intuitive Python library for writing Quil programs to run on Forest SDK.

Forest SDK

QVM: local simulator on up to 26 qubits

QUILC: compiler with the ability to **optimize programs to different architectures**

Why build a quantum computer?

Classical computers have fundamental limits

Transistor scaling

Economic limits with 10bn for next node fab

Ultimate single-atom limits

Returns to parallelization

Amdahl's law

Energy consumption

Exascale computing project has its own power plant

Power density can melt chips

ſ.

Quantum Advantage

Using quantum computers to solve problems **faster**, **cheaper** or **better** than otherwise possible.

Quantum Algorithms' Progression

1992-4

First Quantum Algorithms w/ Exponential Speedup (Deutsch-Jozsa, Shor's Factoring, Discrete Log, ...)

1996

First Quantum Database Search Algorithm (Grover's)

2007

Quantum Linear Equation Solving (Harrow, Hassidim, Lloyd)

2008

Quantum Algorithms for SVM's & Principal Component Analysis

2013 Practical Quantum Chemistry Algorithms (VQE)

2016

Practical Quantum Optimization Algorithms (QAOA) Simulations on Near-term Quantum Supremacy These algorithms require big, perfect quantum computers

> 10,000,000 qubits for Shor's algorithms to factor a 2048 bit number

Hybrid quantum/classical algorithms

noise-robust, empirical speedups

TODAY

Potential Applications for Hybrid Quantum-Classical Approach

Machine Learning

Development of new training sets and algorithms

Classification and sampling of large data sets

Supply Chain Optimization

Forecast and optimize for future inventory demand

NP-hard scheduling and logistics map into quantum applications

Robotic Manufacturing

Reduce manufacturing time and cost

Maps to a Traveling Salesman Problem addressable by quantum constrained optimization Computational Materials Science

Design of better catalysts for batteries

Quantum algorithms for calculating electronic structure

Alternative Energy Research

Efficiently convert atmospheric CO2 to methanol

Powered by existing hybrid quantum- classical algorithms + machine learning Investments across academia, government, and industry are global and growing

ß

Rigetti Computing Proprietary and Confidential

Probabilistic Bits

Qubits

Qubits

Qubits

	Bits	Probabilistic Bits		Qubits	
State (single unit)	$Bit \in \{0, 1\}$	Real vector	$a,b\in\mathbb{R}_+$	Complex vector	$lpha,eta\in\mathbb{C}$
		$ec{v}=aec{0}+bec{1}$	a+b=1	$\ket{\psi} = lpha \ket{0} + eta \ket{1}$	$\left lpha ight ^{2}+\left eta ight ^{2}=1$

$$egin{aligned} |\psi
angle_{ ext{coin}} &= rac{1}{\sqrt{2}}|0
angle + rac{1}{\sqrt{2}}|1
angle \ |\psi
angle_{ ext{coin}} &= rac{1}{\sqrt{2}}|0
angle - rac{1}{\sqrt{2}}|1
angle \ |\psi
angle_{ ext{coin}} &= rac{1}{\sqrt{2}}|0
angle - rac{i}{\sqrt{2}}|1
angle \end{aligned}$$

. . .

$$|\psi
angle_{ ext{coin}}=rac{1}{\sqrt{2}}|0
angle+rac{e^{i heta}}{\sqrt{2}}|1
angle$$

٢.

Qubit States

Rigetti Computing Proprietary and Confidential

Qubit States: Bloch Sphere

$$\ket{\psi} = \cos\!\left(rac{ heta}{2}
ight) \ket{0} + e^{iarphi} \sin\!\left(rac{ heta}{2}
ight) \ket{1}$$

$$\begin{split} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle, \qquad \alpha, \beta \in \mathbb{C}, \qquad |\alpha|^2 + |\beta|^2 = 1\\ |0\rangle &= \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \qquad |\psi\rangle = \begin{pmatrix} \alpha\\\beta \end{pmatrix} \end{split}$$

Kets:

$$|\psi\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix} \qquad |\psi\rangle = \begin{pmatrix} \alpha\\ \beta \end{pmatrix}$$

Measurement yields:

- '0' with probability $|lpha|^2$
- '1' with probability $|eta|^2$

Qubit:
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1$$
Kets: $|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \quad |\psi\rangle = \begin{pmatrix} \alpha\\\beta \end{pmatrix}$ Bras: $\langle 0| = (1, 0) \quad \langle 1| = (0, 1) \quad \langle \psi| = (\overline{\alpha}, \overline{\beta})$

Brackets (Inner Product):

$$\begin{split} |\phi\rangle &= \gamma |0\rangle + \delta |1\rangle \\ \langle\phi|\psi\rangle &= \overline{\gamma}\alpha + \overline{\delta}\beta = \overline{\langle\psi|\phi\rangle} \end{split}$$

Multiple qubits:

$$|\psi\rangle_{n-1}\otimes...\otimes|\psi\rangle_2\otimes|\psi\rangle_1\otimes|\psi\rangle_0$$

Tensor product:

$$\begin{aligned} |\psi\rangle \otimes |\phi\rangle &= (\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes (\beta_0|0\rangle + \beta_1|1\rangle) \\ &= \alpha_0\beta_0|00\rangle + \alpha_0\beta_1|01\rangle + \alpha_1\beta_0|10\rangle + \alpha_1\beta_1|11\rangle \end{aligned}$$

Vector form:

$$\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} \otimes \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} \alpha_0 \begin{pmatrix} \beta_0 \\ \beta_1 \\ \alpha_1 \begin{pmatrix} \beta_0 \\ \beta_0 \\ \beta_1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \alpha_0 \beta_0 \\ \alpha_0 \beta_1 \\ \alpha_1 \beta_0 \\ \alpha_1 \beta_1 \end{pmatrix}$$

$(|\psi\rangle\otimes|\phi\rangle)\otimes|\gamma\rangle=|\psi\rangle\otimes(|\phi\rangle\otimes|\gamma\rangle)$

Not commutative:

 $|\psi\rangle\otimes|\phi\rangle\neq|\phi\rangle\otimes|\psi\rangle$

Single Qubit Operations Rigetti Computing Proprietary and Confidential

Qubit Operations

 $UU^{\dagger} = U^{\dagger}U = I$ Unitary Operators (Gates): $|\psi\rangle \rightarrow |\psi'\rangle = U|\psi\rangle$ Preserve inner product: $\langle \phi | \to \langle \phi' | = \langle \phi | U^{\dagger}$ $\langle \phi | \psi \rangle \to \langle \phi' | \psi' \rangle = \langle \phi | U^{\dagger} U | \psi \rangle = \langle \phi | \psi \rangle$

Qubit Operations: Pauli gates

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
Qubit Operations: Identity gate

$$I|0\rangle = |0\rangle \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$I|1\rangle = |1\rangle \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$X|0\rangle = |1\rangle \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$X|1\rangle = |0\rangle \qquad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

ſ.

$$Y|0\rangle = i|1\rangle \qquad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = i \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
$$Y|1\rangle = -i|0\rangle \qquad \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -i \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$Z|0\rangle = |0\rangle \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$Z|1\rangle = -|1\rangle \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Qubit Operations: Hadamard gate

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right)$$

Qubit Operations: Hadamard gate

$$H|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \qquad \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$H|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \qquad \qquad \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Multi-Qubit Operations

6.

Rigetti Computing Proprietary and Confidential

Examples:

$$I \otimes X (|0\rangle \otimes |0\rangle) = |0\rangle \otimes |1\rangle = I_1 X_0 |00\rangle = |01\rangle$$

$$X \otimes H\left(|0\rangle \otimes |0\rangle\right) = |1\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right) = X_1 H_0 |00\rangle = \frac{1}{2}\left(|10\rangle + |11\rangle\right)$$

$$A \otimes B = \begin{pmatrix} A_{00} & A_{01} \\ A_{10} & A_{11} \end{pmatrix} \otimes \begin{pmatrix} B_{00} & B_{01} \\ B_{10} & B_{11} \end{pmatrix} = \begin{pmatrix} A_{00}[B] & A_{01}[B] \\ A_{10}[B] & A_{11}[B] \end{pmatrix}$$
$$= \begin{pmatrix} A_{00}B_{00} & A_{00}B_{01} & A_{01}B_{00} & A_{01}B_{01} \\ A_{00}B_{10} & A_{00}B_{11} & A_{01}B_{10} & A_{01}B_{11} \\ A_{10}B_{00} & A_{01}B_{01} & A_{11}B_{00} & A_{11}B_{01} \\ A_{10}B_{10} & A_{11}B_{11} & A_{11}B_{10} & A_{11}B_{11} \end{pmatrix}$$

 $X_1H_0|00\rangle$

$$c U = |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes U$$

If qubit *1* is in the state |0>, apply *I* (identity) to qubit *0* **Else if** qubit *1* is in the state |1>, apply *U* to qubit *0*

For example,

$$CNOT = |0\rangle\langle 0| \otimes I + |1\rangle\langle 1| \otimes X = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

A state that cannot be written as a product state, i.e.

$$|\psi\rangle \neq |\xi\rangle \otimes |\phi\rangle$$

An example of a state that is not entangled:

$$\frac{1}{\sqrt{2}}\left(|00\rangle + |01\rangle\right) = |0\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle + |1\rangle\right)$$

An example of a state that is entangled:

$$\frac{1}{\sqrt{2}}\left(\left|00\right\rangle+\left|11\right\rangle\right)$$

Project a ket/bra along a given ket/bra via its corresponding projection operator.

For some $\ket{\psi}$ the corresponding projection operator is given by the outer product

$$P_{\psi} = |\psi\rangle\langle\psi| = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} (\overline{\alpha}, \ \overline{\beta}) = \begin{pmatrix} |\alpha|^2 & \alpha\overline{\beta} \\ \beta \overline{\alpha} & |\beta|^2 \end{pmatrix}$$

e.g.

$$P_{0} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, P_{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, P_{+} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Computational basis: $\{|0\rangle, |1\rangle\}$

Measurement yields:

- '0' with probability $\langle \psi | P_0 | \psi \rangle = \langle \psi | 0 \rangle \langle 0 | \psi \rangle = |\langle 0 | \psi \rangle|^2$
- '1' with probability $\langle \psi | P_1 | \psi \rangle = \langle \psi | 1 \rangle \langle 1 | \psi \rangle = |\langle 1 | \psi \rangle|^2$

Some other basis:
$$\{|0'\rangle = U|0\rangle, |1'\rangle = U|1\rangle\}$$
 $|\psi'\rangle = U^{\dagger}|\psi\rangle$

Measurement yields:

- 0' with probability $\langle \psi | P_{0'} | \psi \rangle = \langle \psi | 0' \rangle \langle 0' | \psi \rangle = \langle \psi | U | 0 \rangle \langle 0 | U^{\dagger} | \psi \rangle$ $= \langle \psi' | 0 \rangle \langle 0 | \psi' \rangle = |\langle 0 | \psi' \rangle|^2$ - 1' with probability $\langle \psi | P_{1'} | \psi \rangle = \langle \psi | 1' \rangle \langle 1' | \psi \rangle = \langle \psi | U | 1 \rangle \langle 1 | U^{\dagger} | \psi \rangle$ $= \langle \psi' | 1 \rangle \langle 1 | \psi' \rangle = |\langle 1 | \psi' \rangle|^2$

Measurement of $|\Psi\rangle$ in some basis {U|0>, U|1>}

= Measurement of $U^{\dagger}|\Psi$ > in standard computational basis {|0>, |1>}

Rigetti Computing Proprietary and Confidential

$X|0\rangle = |1\rangle$ $|0\rangle$ — X — \checkmark

from pyquil import Program, get_qc from pyquil.gates import X

p = Program(X(0))
qc = get_qc('9q-generic-qvm')
results = qc.run_and_measure(p, trials=10)[0]

print (results)

[1111111111]

from pyquil import Program, get_qc from pyquil.gates import X, MEASURE

```
p = Program()
p.declare('ro', 'BIT', 1)
p.inst(X(0))
p.inst(MEASURE(0, 'ro'))
p.wrap_in_numshots_loop(shots=10)
```

```
qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))
```

DECLARE ro BIT[1] X 0 MEASURE 0 ro[0]

print (p)

from pyquil import Program, get_qc from pyquil.gates import X, MEASURE

p = Program() p.declare('ro', 'BIT', 1) p.inst(X(0))p.inst(MEASURE(0, 'ro')) p.wrap_in_numshots_loop(shots=10)

qc = get_qc('9q-generic-qvm') results = qc.run(qc.compile(p))

print (results)

[[1] [1] [1] [1] [1] [1] [1] [1]

> [1] [1]]

٢.

 $X_1H_0 |0\rangle_1|0\rangle_0$ Х from pyquil import Program, get_qc Н from pyguil.gates import X, H, MEASURE p = Program() [[0 1] ro = p.declare('ro', 'BIT', 2) [1 1] p.inst(H(0))[0 1] p.inst(X(1))p.inst(MEASURE(0, ro[0])) [1 1] p.inst(MEASURE(1, ro[1])) [1 1] p.wrap_in_numshots_loop(shots=10) [0 1] [1 1] $qc = get_qc('9q-generic-qvm')$ [0 1] results = qc.run(qc.compile(p)) [0 1] print (results) [0 1]]

```
Y_1 Z_0 X_1 H_0 |0\rangle_1 |0\rangle_0
```


from pyquil import Program, get_qc from pyquil.gates import X, Y, Z, H, MEASURE

p = Program()
ro = p.declare('ro', 'BIT', 2)
p += Program(H(0), X(1), Z(0), Y(1), MEASURE(0, ro[0]), MEASURE(1, ro[1]))
p.wrap_in_numshots_loop(shots=10)

qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))

print (results)

[[1 0] [1 0] [0 0] [1 0] [1 0] [1 0] [1 0] [1 0] [0 0] [0 0]]

from pyquil import Program from pyquil.gates import H, CNOT from pyquil.api import WavefunctionSimulator

p = Program(H(1))
p += Program(CNOT(1, 0))
wfn = WavefunctionSimulator().wavefunction(p)

print (wfn)

(0.7071067812+0j)|00> + (0.7071067812+0j)|11>

Quantum Programming Examples ſ.

Rigetti Computing Proprietary and Confidential

Quantum Die Example

Goal: Create a fair N-sided die

Question: What gate would we use?

$$\left. H^{\otimes n} \left| 0
ight
angle^{\otimes n} = \left(H \left| 0
ight
angle
ight)^{\otimes n} = rac{1}{\sqrt{2^n}} \sum_{z=0}^{2^n-1} \left| z
ight
angle$$

Question: How many qubits would we use?

$$2^n = N \Rightarrow n = \log_2 N$$

Quantum Teleportation Example

Goal: Teleport a qubit state from Alice to Bob

Goal: Teleport a qubit state from Alice to Bob

Scenario: Alice is in possession of a qubit $|\Psi\rangle$, which she would like to teleport over to Bob, who is at some distant location.

Protocol:

- Create a Bell state, giving one qubit each to Alice and Bob
- Have Alice measure both her qubits in the Bell basis, and send her results to Bob
- Have Bob conditionally apply gates to his qubits, based off Alice's measurements, to reconstruct the original qubit at his location

Example: Quantum Teleportation


```
from pyquil import Program
from pyquil.gates import I, X
from pyquil.api import WavefunctionSimulator
```

```
p = Program(X(0))
ro = p.declare('ro', 'BIT', 1)
p.measure(0, ro[0]).if_then(ro[0], Program(X(1)), Program(I(1)))
wfn = WavefunctionSimulator().wavefunction(p)
```

print (wfn)

(1+0j)|11>

```
from pyquil import Program
from pyquil.gates import I, X
from pyquil.api import WavefunctionSimulator
```

```
p = Program(I(0))
ro = p.declare('ro', 'BIT', 1)
p.measure(0, ro[0]).if_then(ro[0], Program(X(1)), Program(I(1)))
wfn = WavefunctionSimulator().wavefunction(p)
```

print (wfn)

(1+0j)|00>

Example: Quantum Teleportation

Quantum Approximate Optimization Algorithm (QAOA)
Goal: Given binary constraints over bitstrings

$$z \in \{0, 1\}^{n}$$
$$C_{\alpha}(z) = \begin{cases} 1 & \text{if } z \text{ satisfies the constraint } \alpha \\ 0 & \text{if } z \text{ does not} \end{cases}$$

Find the bitstring that maximizes the objective function

$$\operatorname{argmax}_{z} C(z) = \operatorname{argmax}_{z} \sum_{\alpha=1}^{m} C_{\alpha}(z)$$

MaxCut problem:

Given some undirected graph with arbitrary (non-negative) weights, find a partition (S, \overline{S}) of the graph's nodes (a 'cut' of the graph) that maximizes the weights along the cut

Quantum Approximate Optimization Algorithm

Quantum Approximate Optimization Algorithm

MaxCut solution (as a bitstring):

01001 OR 10110

On a quantum computer:

$$\frac{1}{\sqrt{2}}\left(\left|01001\right\rangle+\left|10110\right\rangle\right)$$

(ideally)

Quantum Approximate Optimization Algorithm

MaxCut objective function:

٢.

On a quantum computer:

 $\frac{1}{2} \sum w_{ij} \frac{1 - Z_i Z_j}{2}$

Noise and Quantum Computation

ſ.

Rigetti Computing Proprietary and Confidential

'Pure' quantum states

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

evolve via Unitary operations

$$|\psi\rangle \rightarrow |\psi'\rangle = U|\psi\rangle \qquad UU^{\dagger} = U^{\dagger}U = I$$

More generally, quantum states are described by "Density Matrix"

$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i |$$

evolving via Kraus operations ("quantum channel")

$$\rho \to \sum_{i} K_{i} \rho K_{i}^{\dagger}, \qquad \sum_{i} K_{i}^{\dagger} K_{i} = I$$

For example,

$$\rho = \frac{1}{2} \left(|0\rangle\langle 0| + |1\rangle\langle 1| \right) = \frac{1}{2} \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array} \right)$$

Not to be confused with

$$\rho = \left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right) \left(\frac{1}{\sqrt{2}}(\langle 0| + \langle 1|)\right) = \frac{1}{2} \left(\begin{array}{cc} 1 & 1\\ 1 & 1 \end{array}\right)$$

Example of quantum channel/set of Kraus operators/noise model:

$$\{\sqrt{p}X, \sqrt{1-p}Z\}$$

Quantum state passing through the channel/experiencing the noise transforms to:

$$\rho \to p X^{\dagger} \rho X + (1-p) Z^{\dagger} \rho Z$$

Thank you, and keep in touch!

amy@rigetti.com

Join our Slack channel: <u>rigetti-forest.slack.com</u>

