

Quantum Computing and Programming Workshop Rigetti Computing

02.25.2018

rigetti
Full-stack quantum computing company.

8-qubit and 19-qubit QPUs released on our cloud platform in 2017; 16-qubit Aspen-series QPUs released fall 2018

Quantum Cloud Services launched Fall 2018, with roadmap to 128-qubit systems

100+ employees w/ \$119M raised

Home of Fab-1, the world's first commercial quantum integrated circuit fab

Located in Berkeley, Calif. (R\&D Lab) and Fremont, Calif.

Quantum Cloud Services and the Rigetti Forest SDK

奋

Rigetti Quantum Cloud Services

API Model

QCS

Colocation to reduce network latency between QPU and CPU.

Parameterized program compilation to reduce \# of round trips to achieve solution.

Active reset of qubits in QPU to accelerate quantum runtime
new Quantum Machine Image access model
~30x faster than web API access models

Web API

E.g. IBM Quantum Experience Rigetti Forest 1.x

Colocation
to reduce network latency between QPU and CPU.

+ Parametric Compilation + Active Reset
to reduce \# of round trips to achieve solution.
$\times 13.5$
$\times 34.6$ faster

Rigetti Forest SDK

pyQuil

intuitive Python library for writing Quil programs to run on Forest SDK.

Forest SDK

QVM: local simulator on up to 26 qubits

QUILC: compiler with the ability to optimize programs to different architectures

pyQuil

Why build a

 quantum computer?

Quantum Algorithms' Progression

1992-4
First Quantum Algorithms w/ Exponential Speedup (Deutsch-Jozsa, Shor's Factoring, Discrete Log, ...)

1996
First Quantum Database Search Algorithm (Grover's)

2007

Quantum Linear Equation Solving (Harrow, Hassidim, Lloyd) 2008
Quantum Algorithms for SVM's \& Principal Component Analysis

2013

Practical Quantum Chemistry Algorithms (VQE)
2016
Practical Quantum Optimization Algorithms (QAOA)
Simulations on Near-term Quantum Supremacy

These algorithms require big, perfect quantum computers
$>10,000,000$ qubits for Shor's algorithms
to factor a 2048 bit number

Hybrid quantum/classical algorithms

"Quantum computing in the NISQ era and beyond" Preskill, 2018 https://arxiv.org/abs/1801.00862

"Quantum computing in the NISQ era and beyond" Preskill, 2018 https://arxiv.org/abs/1801.00862

"Quantum computing in the NISQ era and beyond" Preskill, 2018 https://arxiv.org/abs/1801.00862

"Quantum computing in the NISQ era and beyond" Preskill, 2018 https://arxiv.org/abs/1801.00862

Machine Learning

Development of new training sets and algorithms

Classification and sampling of large data sets

Supply Chain
Optimization

Forecast and optimize for future inventory demand

NP-hard scheduling and logistics map into quantum applications

Robotic
 Manufacturing

Reduce
manufacturing time and cost

Maps to a Traveling Salesman Problem addressable by quantum constrained optimization

Computational Materials Science

Design of better catalysts for batteries

Quantum algorithms for calculating electronic structure

Alternative Energy Research

Efficiently convert atmospheric CO2 to methanol

Powered by existing hybrid quantum- classical algorithms + machine learning

Who is building and investing in quantum computers?

Investments across academia, government, and industry are global and growing

No small effort

Bits vs. Probabilistics Bits vs. Qubits

Bits Probabilistic Bits Qubits

State (single unit)	Bit $\in\{0,1\}$

| Bits | Probabilistic Bits | |
| :--- | :--- | :--- | :--- |
| State (single unit) | Bit $\in\{0,1\}$ | Real vector
 $\vec{v}=a \overrightarrow{0}+b \overrightarrow{1}$ $a, b \in \mathbb{R}_{+}$

 |

Bits		Probabilistic Bits		Qubits	
State (single unit)	Bit $\in\{0,1\}$	Real vector $\vec{v}=a \overrightarrow{0}+b \overrightarrow{1}$	$\begin{aligned} & a, b \in \mathbb{R}_{+} \\ & a+b=1 \end{aligned}$	Complex vector $\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle$	$\begin{gathered} \alpha, \beta \in \mathbb{C} \\ \|\alpha\|^{2}+\|\beta\|^{2}=1 \end{gathered}$

Bits		Probabilistic Bits		Qubits	
State (single unit)	Bit $\in\{0,1\}$	Real vector $\vec{v}=a \overrightarrow{0}+b \overrightarrow{1}$	$\begin{aligned} & a, b \in \mathbb{R}_{+} \\ & a+b=1 \end{aligned}$	Complex vector $\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle$	$\begin{gathered} \alpha, \beta \in \mathbb{C} \\ \|\alpha\|^{2}+\|\beta\|^{2}=1 \end{gathered}$
			$\|\alpha\|^{2}=\operatorname{Pr}$		Probability of 1

Bits vs. Probabilistic Bits vs. Qubits

Bits	Probabilistic Bits		Qubits		
State (single unit)	Bit $\in\{0,1\}$	Real vector	$a, b \in \mathbb{R}_{+}$	Complex vector	$\alpha, \beta \in \mathbb{C}$
		$\vec{v}=a \overrightarrow{0}+b \overrightarrow{1}$	$a+b=1$	$\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle$	$\|\alpha\|^{2}+\|\beta\|^{2}=1$

$$
\vec{v}_{\text {coin }}=\frac{1}{2} \overrightarrow{0}+\frac{1}{2} \overrightarrow{1}
$$

Bits vs. Probabilistic Bits vs. Qubits

Bits
Probabilistic Bits
Qubits

State (single unit)	Bit $\in\{0,1\}$	Real vector	$a, b \in \mathbb{R}_{+}$	Complex vector	$\alpha, \beta \in \mathbb{C}$
	$\vec{v}=a \overrightarrow{0}+b \overrightarrow{1}$	$a+b=1$	$\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle$	$\|\alpha\|^{2}+\|\beta\|^{2}=1$	

CLASSICAL BIT

$$
\vec{v}_{\mathrm{coin}}=\frac{1}{2} \overrightarrow{0}+\frac{1}{2} \overrightarrow{1}
$$

$$
\begin{aligned}
& |\psi\rangle_{\mathrm{coin}}=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \\
& |\psi\rangle_{\mathrm{coin}}=\frac{1}{\sqrt{2}}|0\rangle-\frac{1}{\sqrt{2}}|1\rangle \\
& |\psi\rangle_{\mathrm{coin}}=\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle
\end{aligned}
$$

Bits vs. Probabilistic Bits vs. Qubits

Bits
Probabilistic Bits
Qubits

State (single unit)	Bit $\in\{0,1\}$	Real vector	$a, b \in \mathbb{R}_{+}$	Complex vector	$\alpha, \beta \in \mathbb{C}$
	$\vec{v}=a \overrightarrow{0}+b \overrightarrow{1}$	$a+b=1$	$\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle$	$\|\alpha\|^{2}+\|\beta\|^{2}=1$	

$$
\vec{v}_{\text {coin }}=\frac{1}{2} \overrightarrow{0}+\frac{1}{2} \overrightarrow{1} \quad|\psi\rangle_{\text {coin }}=\frac{1}{\sqrt{2}}|0\rangle+\frac{e^{i \theta}}{\sqrt{2}}|1\rangle
$$

CLASSICAL BIT

Bits vs. Probabilistic Bits vs. Qubits

Bits
Probabilistic Bits
Qubits

State (single unit)	Bit $\in\{0,1\}$	Real vector	$a, b \in \mathbb{R}_{+}$	Complex vector	$\alpha, \beta \in \mathbb{C}$
	$\vec{v}=a \overrightarrow{0}+b \overrightarrow{1}$	$a+b=1$	$\|\psi\rangle=\alpha\|0\rangle+\beta\|1\rangle$	$\|\alpha\|^{2}+\|\beta\|^{2}=1$	

Qubit States

$$
|\psi\rangle=\cos \left(\frac{\theta}{2}\right)|0\rangle+e^{i \varphi} \sin \left(\frac{\theta}{2}\right)|1\rangle
$$

Qubit:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

Kets:

$$
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|\psi\rangle=\binom{\alpha}{\beta}
$$

Measurement yields:

- '0' with probability $|\alpha|^{2}$
- ' 1 ' with probability $|\beta|^{2}$

Qubit:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

Kets:

Bras:

$$
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1} \quad|\psi\rangle=\binom{\alpha}{\beta}
$$

$$
\langle 0|=(1,0)
$$

$$
\langle 1|=(0,1)
$$

$$
\langle\psi|=(\bar{\alpha}, \bar{\beta})
$$

Brackets

(Inner Product):

$$
\begin{gathered}
|\phi\rangle=\gamma|0\rangle+\delta|1\rangle \\
\langle\phi \mid \psi\rangle=\bar{\gamma} \alpha+\bar{\delta} \beta=\overline{\langle\psi \mid \phi\rangle}
\end{gathered}
$$

Multiple qubits:

$$
|\psi\rangle_{n-1} \otimes \ldots \otimes|\psi\rangle_{2} \otimes|\psi\rangle_{1} \otimes|\psi\rangle_{0}
$$

Tensor product:

$$
\begin{aligned}
&|\psi\rangle \otimes|\phi\rangle=\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right) \otimes\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right) \\
&=\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle
\end{aligned}
$$

Vector form: $\quad\binom{\alpha_{0}}{\alpha_{1}} \otimes\binom{\beta_{0}}{\beta_{1}}=\left(\begin{array}{c}\alpha_{0}\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{0} \\ \beta_{0} \\ \beta_{1}\end{array}\right)\end{array}\right)=\left(\begin{array}{c}\alpha_{0} \beta_{0} \\ \alpha_{0} \beta_{1} \\ \alpha_{1} \beta_{0} \\ \alpha_{1} \beta_{1}\end{array}\right)$

Associative:

$$
(|\psi\rangle \otimes|\phi\rangle) \otimes|\gamma\rangle=|\psi\rangle \otimes(|\phi\rangle \otimes|\gamma\rangle)
$$

Not commutative:

$$
|\psi\rangle \otimes|\phi\rangle \neq|\phi\rangle \otimes|\psi\rangle
$$

Single Qubit Operations

Unitary Operators (Gates):

$$
U U^{\dagger}=U^{\dagger} U=I
$$

$$
|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle
$$

Preserve inner product:

$$
\begin{gathered}
\langle\phi| \rightarrow\left\langle\phi^{\prime}\right|=\langle\phi| U^{\dagger} \\
\langle\phi \mid \psi\rangle \rightarrow\left\langle\phi^{\prime} \mid \psi^{\prime}\right\rangle=\langle\phi| U^{\dagger} U|\psi\rangle=\langle\phi \mid \psi\rangle
\end{gathered}
$$

$$
\begin{array}{ll}
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

$$
\begin{array}{ll}
I|0\rangle=|0\rangle & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{0}{1}=\binom{0}{1} \\
I|1\rangle=|1\rangle & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{1}{0}=\binom{1}{0}
\end{array}
$$

Qubit Operations: Pauli-X (NOT) gate

$$
\begin{array}{ll}
X|0\rangle=|1\rangle & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \\
X|1\rangle=|0\rangle & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}
\end{array}
$$

$$
\begin{array}{ll}
Y|0\rangle=i|1\rangle & \left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=i\binom{0}{1} \\
Y|1\rangle=-i|0\rangle & \left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{0}{1}=-i\binom{1}{0}
\end{array}
$$

$$
\begin{array}{ll}
Z|0\rangle=|0\rangle & \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=\binom{1}{0} \\
Z|1\rangle=-|1\rangle & \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{0}{1}=-\binom{0}{1}
\end{array}
$$

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\begin{aligned}
& H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
\end{aligned} \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1}
$$

Multi-Qubit Operations

Examples:

$$
I \otimes X(|0\rangle \otimes|0\rangle)=|0\rangle \otimes|1\rangle=I_{1} X_{0}|00\rangle=|01\rangle
$$

$$
X \otimes H(|0\rangle \otimes|0\rangle)=|1\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=X_{1} H_{0}|00\rangle=\frac{1}{2}(|10\rangle+|11\rangle)
$$

$$
\begin{aligned}
& A \otimes B=\left(\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right) \otimes\left(\begin{array}{ll}
B_{00} & B_{01} \\
B_{10} & B_{11}
\end{array}\right)=\left(\begin{array}{lll}
A_{00}[B] & A_{01}[B] \\
A_{10}[B] & A_{11}[B]
\end{array}\right) \\
&=\left(\begin{array}{llll}
A_{00} B_{00} & A_{00} B_{01} & A_{01} B_{00} & A_{01} B_{01} \\
A_{00} B_{10} & A_{00} B_{11} & A_{01} B_{10} & A_{01} B_{11} \\
A_{10} B_{00} & A_{01} B_{01} & A_{11} B_{00} & A_{11} B_{01} \\
A_{10} B_{10} & A_{11} B_{11} & A_{11} B_{10} & A_{11} B_{11}
\end{array}\right)
\end{aligned}
$$

$X|0\rangle=|1\rangle$

$X_{1} H_{0}|00\rangle$

$$
c U=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes U
$$

If qubit 1 is in the state $\mid 0>$, apply I (identity) to qubit 0 Else if qubit 1 is in the state $\mid 1>$, apply U to qubit 0

For example,

$$
\text { CNOT }=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes X=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

A state that cannot be written as a product state, i.e.

$$
|\psi\rangle \neq|\xi\rangle \otimes|\phi\rangle
$$

An example of a state that is not entangled:

$$
\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle)=|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
$$

An example of a state that is entangled:

$$
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)
$$

Project a ket/bra along a given ket/bra via its corresponding projection operator.

For some $|\psi\rangle$ the corresponding projection operator is given by the outer product

$$
P_{\psi}=|\psi\rangle\langle\psi|=\binom{\alpha}{\beta}(\bar{\alpha}, \bar{\beta})=\left(\begin{array}{cc}
|\alpha|^{2} & \alpha \bar{\beta} \\
\beta \bar{\alpha} & |\beta|^{2}
\end{array}\right)
$$

e.g.

$$
P_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), P_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), P_{+}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Computational basis: $\quad\{|0\rangle,|1\rangle\}$

Measurement yields:

- '0' with probability

$$
\langle\psi| P_{0}|\psi\rangle=\langle\psi \mid 0\rangle\langle 0 \mid \psi\rangle=|\langle 0 \mid \psi\rangle|^{2}
$$

- ' 1 ' with probability

$$
\langle\psi| P_{1}|\psi\rangle=\langle\psi \mid 1\rangle\langle 1 \mid \psi\rangle=|\langle 1 \mid \psi\rangle|^{2}
$$

Some other basis: $\quad\left\{\left|0^{\prime}\right\rangle=U|0\rangle,\left|1^{\prime}\right\rangle=U|1\rangle\right\}$

$$
\left|\psi^{\prime}\right\rangle=U^{\dagger}|\psi\rangle
$$

Measurement yields:

- 0^{\prime} with probability

$$
\begin{gathered}
\langle\psi| P_{0^{\prime}}|\psi\rangle=\left\langle\psi \mid 0^{\prime}\right\rangle\left\langle 0^{\prime} \mid \psi\right\rangle=\langle\psi| U|0\rangle\langle 0| U^{\dagger}|\psi\rangle \\
=\left\langle\psi^{\prime} \mid 0\right\rangle\left\langle 0 \mid \psi^{\prime}\right\rangle=\left|\left\langle 0 \mid \psi^{\prime}\right\rangle\right|^{2}
\end{gathered}
$$

- 1 ' with probability

$$
\begin{gathered}
\langle\psi| P_{1^{\prime}}|\psi\rangle=\left\langle\psi \mid 1^{\prime}\right\rangle\left\langle 1^{\prime} \mid \psi\right\rangle=\langle\psi| U|1\rangle\langle 1| U^{\dagger}|\psi\rangle \\
=\left\langle\psi^{\prime} \mid 1\right\rangle\left\langle 1 \mid \psi^{\prime}\right\rangle=\left|\left\langle 1 \mid \psi^{\prime}\right\rangle\right|^{2}
\end{gathered}
$$

Measurement of $\mid \Psi>$ in some basis $\{\mathrm{U}|0>, \mathrm{U}| 1>\}$
$=$ Measurement of $\mathrm{U}^{\dagger} \mid \Psi>$ in standard computational basis $\{|0>| 1>$,

Quantum Programs

$X|0\rangle=|1\rangle$

from pyquil import Program, get_qc
from pyquil.gates import X
p = Program (X(0))
qc = get_qc('9q-generic-qvm')
results = qc.run_and_measure $(p$, trials=10)[0]
print (results)
[1 1111111111]
$X|0\rangle=|1\rangle$
from pyquil import Program, get_qc
from pyquil.gates import X, MEASURE
p = Program()
p.declare('ro', 'BIT', 1)
p.inst(X(0))
p.inst(MEASURE(0, 'ro'))
p.wrap_in_numshots_loop(shots=10)
qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))
print (p)

DECLARE ro BIT[1]
X 0
MEASURE 0 ro[0]

$$
X|0\rangle=|1\rangle
$$

from pyquil import Program, get_qc
from pyquil.gates import X, MEASURE
p = Program(
p.declare('ro', 'BIT', 1)
p.inst(X(0))
p.inst(MEASURE(0, 'ro'))
p.wrap_in_numshots_loop(shots=10)
qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))
print (results)
[1][1][1][1][1][1]

$X_{1} H_{0}|0\rangle_{1}|0\rangle_{0}$

from pyquil import Program, get_qc from pyquil.gates import X, H, MEASURE
p = Program(
ro = p.declare('ro', 'BIT', 2)
p.inst($\mathrm{H}(0)$)
p.inst(X(1))
p.inst(MEASURE(0, ro[0]))
p.inst(MEASURE(1, ro[1]))
p.wrap_in_numshots_loop(shots=10)
qc = get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))
print (results)

[$\left[\begin{array}{ll}0 & 1\end{array}\right]$
[1 1]
[01]
[11]
[11]
[01]
[11]
[01]
$\left[\begin{array}{ll}0 & 1\end{array}\right]$
[0 1]]

$Y_{1} Z_{0} X_{1} H_{0}|0\rangle_{1}|0\rangle_{0}$

from pyquil import Program, get_qc
from pyquil.gates import X, Y, Z, H, MEASURE

[[1 0]
$\mathrm{p}=$ Program() [1 0]
ro = p.declare('ro', 'BIT', 2)
$\mathrm{p}+=\operatorname{Program}(\mathrm{H}(0), \mathrm{X}(1), \mathrm{Z}(0), \mathrm{Y}(1), \operatorname{MEASURE}(0, \mathrm{ro}[0])$, MEASURE(1, ro[1])) [0 0] p.wrap_in_numshots_loop(shots=10)
$\mathrm{qc}=$ get_qc('9q-generic-qvm')
results = qc.run(qc.compile(p))
[10] [1 0]
[0 0]
print (results)
[10]
[1 0]
[0 0]
[0 0 0]]

Quantum Programming Examples

Quantum Die Example

Goal: Create a fair N -sided die

Question: What gate would we use?

$$
H^{\otimes n}|0\rangle^{\otimes n}=(H|0\rangle)^{\otimes n}=\frac{1}{\sqrt{2^{n}}} \sum_{z=0}^{2^{n}-1}|z\rangle
$$

Question: How many qubits would we use?

$$
2^{n}=N \Rightarrow n=\log _{2} N
$$

Quantum
Teleportation
Example

Goal: Teleport a qubit state from Alice to Bob

Goal: Teleport a qubit state from Alice to Bob

Scenario: Alice is in possession of a qubit | $\Psi\rangle$, which she would like to teleport over to Bob, who is at some distant location.

Protocol:

- Create a Bell state, giving one qubit each to Alice and Bob
- Have Alice measure both her qubits in the Bell basis, and send her results to Bob
- Have Bob conditionally apply gates to his qubits, based off Alice's measurements, to reconstruct the original qubit at his location

from pyquil import Program
from pyquil.gates import I, X
from pyquil.api import WavefunctionSimulator
$p=\operatorname{Program}(X(0))$
ro = p.declare('ro', 'BIT', 1)
p.measure(0, ro[0]).if_then(ro[0], Program(X(1)), Program(I(1)))
wfn = WavefunctionSimulator().wavefunction(p)
print (wfn)
(1+0j)|11>
from pyquil import Program
from pyquil.gates import I, X
from pyquil.api import WavefunctionSimulator
p = Program $(1(0))$
ro = p.declare('ro', 'BIT', 1)
p.measure(0, ro[0]).if_then(ro[0], Program(X(1)), Program(I(1)))
wfn = WavefunctionSimulator().wavefunction(p)
print (wfn)
$(1+0 \mathrm{j}) \mid 00>$

Example: Quantum Teleportation

Quantum

 Approximate Optimization Algorithm (QAOA)Goal: Given binary constraints over bitstrings

$$
\begin{aligned}
& z \in\{0,1\}^{n} \\
& C_{\alpha}(z)= \begin{cases}1 & \text { if } z \text { satisfies the constraint } \alpha \\
0 & \text { if } z \text { does not }\end{cases}
\end{aligned}
$$

Find the bitstring that maximizes the objective function

$$
\operatorname{argmax}_{z} C(z)=\operatorname{argmax}_{z} \sum_{\alpha=1}^{m} C_{\alpha}(z)
$$

MaxCut problem:

Given some undirected graph with arbitrary (non-negative) weights, find a partition (S, \bar{S}) of the graph's nodes (a 'cut' of the graph) that maximizes the weights along the cut

$$
\sum_{i \in S, j \in \bar{S}} w_{i j}
$$

MaxCut solution (as a bitstring):

$$
01001 \text { OR } 10110
$$

On a quantum computer:

$$
\frac{1}{\sqrt{2}}(|01001\rangle+|10110\rangle)
$$

(ideally)

MaxCut objective function:

$$
\sum_{i \in S, j \in \bar{S}} w_{i j}
$$

On a quantum computer:

$$
\frac{1}{2} \sum_{i, j \in V} w_{i j} \frac{1-Z_{i} Z_{j}}{2}
$$

Noise and Quantum Computation

'Pure' quantum states

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

evolve via Unitary operations

$$
|\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle \quad U U^{\dagger}=U^{\dagger} U=I
$$

More generally, quantum states are described by "Density Matrix"

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

evolving via Kraus operations ("quantum channel")

$$
\rho \rightarrow \sum_{i} K_{i} \rho K_{i}^{\dagger}, \quad \sum_{i} K_{i}^{\dagger} K_{i}=I
$$

For example,

$$
\rho=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)=\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Not to be confused with

$$
\rho=\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right)\left(\frac{1}{\sqrt{2}}(\langle 0|+\langle 1|)\right)=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Example of quantum channel/set of Kraus operators/noise model:

$$
\{\sqrt{p} X, \sqrt{1-p} Z\}
$$

Quantum state passing through the channel/experiencing the noise transforms to:

$$
\rho \rightarrow p X^{\dagger} \rho X+(1-p) Z^{\dagger} \rho Z
$$

Thank you, and keep in touch!
 amy@rigetti.com

Join our Slack channel: rigetti-forest.slack.com

